bookboon.com

Engineering Fluid Mechanics Solution Manual

Prof. T.T. Al-Shemmeri

Download free books at bookboon.com

Prof. T.T. Al-Shemmeri

Engineering Fluid Mechanics Solution Manual

Engineering Fluid Mechanics Solution Manual © 2012 Prof. T.T. Al-Shemmeri \& bookboon.com ISBN 978-87-403-0263-9

Contents

Book Description: 5
Author Details: 5
1 Chapter One Tutorial Problems 6
2 Chapter Two Tutorial Problems 13
3 Chapter Three Tutorial Problems 21
4 Chapter Four Tutorial Problems 28
5 Chapter Five Tutorial Problems 31
Sample Examination Paper 33
Class Test - Fluid Mechanics 34
Formulae Sheet 44

Rand Merchant Bank uses good business to create a better world, which is one of the reasons that the country's top talent chooses to work at RMB. For more information visit us at www.rmb.co.za

Book Description:

Title - Engineering Fluid Mechanics Solution Manual

Author - Prof. T.T. Al-Shemmeri

Fluid Mechanics is an essential subject in the study of the behaviour of fluids at rest and when in motion.

The book is complimentary follow up for the book "Engineering Fluid Mechanics" also published on BOOKBOON, presenting the solutions to tutorial problems, to help students the option to see if they got the correct answers, and if not, where they went wrong, and change it to get the correct answers.

Author Details:

Prof Tarik Al-Shemmeri - BSc, MSc, PhD, CEng

Professor of Renewable Energy Technology at Staffordshire University.
Current research interests in Renewable Energy and Environmental Technology.
Lecturing topics include: Energy management and Power generation.

1 Chapter One Tutorial Problems

1.1 Show that the kinematic viscosity has the primary dimensions of $\mathrm{L}^{2} \mathrm{~T}^{-1}$.

Solution:

The kinematic viscosity is defined as the ratio of the dynamic viscosity by the density of the fluid.

The density has units of mass (kg) divided by volume $\left(\mathrm{m}^{3}\right)$; whereas the dynamic viscosity has the units of mass (kg) per meter (m) per time (s).

Hence:

$$
v=\frac{\mu}{\rho}=\frac{M L^{-1} T^{-1}}{M L^{-3}}=L^{2} T^{-1}
$$

1.2 In a fluid the velocity measured at a distance of 75 mm from the boundary is $1.125 \mathrm{~m} / \mathrm{s}$. The fluid has absolute viscosity $0.048 \mathrm{~Pa} s$ and relative density 0.913 . What is the velocity gradient and shear stress at the boundary assuming a linear velocity distribution? Determine its kinematic viscosity.
[Ans: $15 \mathrm{~s}^{-1}, 0.72 \mathrm{~Pa} . \mathrm{s} ; 5.257 \mathrm{x} 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$]

Solution:

$$
\begin{aligned}
& \text { Gradient }=\frac{d V}{d y}=\frac{1.125}{0.075}=15 \mathrm{~s}^{-1} \\
& \tau=\mu \frac{d V}{d y}=0.048 \times 15=0.720 \mathrm{Pa.s} \\
& v=\frac{\mu}{\rho}=\frac{0.048}{913}=5.257 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

1.3 A dead-weight tester is used to calibrate a pressure transducer by the use of known weights placed on a piston hence pressurizing the hydraulic oil contained. If the diameter of the piston is 10 mm , determine the required weight to create a pressure of 2 bars.
[Ans: 1.6 kg]

Dead-Weight Tester

Solution:

(a) $\mathrm{P}=\mathrm{F} / \mathrm{A}$

$$
A=\frac{\pi}{4} D^{2}=\frac{\pi}{4} \times 0.010^{2}=7.854 \times 10^{-5} \mathrm{~m}^{2}
$$

Hence the weight $\quad=\mathrm{P} \times \mathrm{A} / \mathrm{g}$

$$
=2 \times 10^{5} \times 7.854 \times 10^{-5} / 9.81
$$

$$
=1.60 \mathrm{~kg}
$$

1.4 How deep can a diver descend in ocean water without damaging his watch, which will withstand an absolute pressure of 5.5 bar?
Take the density of ocean water, $\rho=1025 \mathrm{~kg} / \mathrm{m}^{3}$.

[Ans: 44.75 m]

Solution:

Use the static equation: $p=\rho g h$

Hence the depth can be calculated as:

$$
h=\frac{P}{\rho . g}=\frac{(5.5-1) \times 10^{5}}{1025 \times 9.81}=44.75 \mathrm{~m} \text { Water }
$$

1.5 The U-tube manometer shown below, prove that the difference in pressure is given by:

$$
P_{1}-P_{2}=\rho \cdot g \cdot z_{2}\left[1+\left(\frac{d}{D}\right)^{2}\right]
$$

Download free eBooks at bookboon.com

Solution:

The relationship between liquid columns and the area of cross section is based on the conservation of matter, ie continuity equation, hence:
volume 1 = volume 2
$z_{1} x A_{1}=z_{2} x A_{2}$
hence $\rightarrow z_{1}=\frac{z_{2} x(\pi / 4) x d^{2}}{(\pi / 4) x D^{2}}=z_{2} x\left(\frac{d}{D}\right)^{2}$

For the "U" tube manometer that the height different in the two columns gives the pressure difference, therefore:
$F 1=F 2$
$P_{1}+\rho \cdot g \cdot z_{1}=P_{2}+\rho \cdot g \cdot z_{2}$
hence
$P_{1}-P_{2}=\rho \cdot g \cdot\left(z_{2}-z_{1}\right)$
$=\rho \cdot g \cdot z_{2} x\left[1+(d / D)^{2}\right]$

Clearly if D is very much larger than d then $(d / D)^{2}$ is very small so

$$
P_{1}-P_{2}=\rho \cdot g \cdot z_{2}
$$

1.6 A flat circular plate, 1.25 m diameter is immersed in sewage water (density $1200 \mathrm{~kg} / \mathrm{m}^{3}$) such that its greatest and least depths are 1.50 m and 0.60 m respectively. Determine the force exerted on one face by the water pressure,
[Ans: 15180 N]

Solution:

Area of laminar

A $\quad=\frac{1}{4} \pi(1.25)^{2}=1.228 \mathrm{~m}^{2}$

Depth to centroid
$\mathrm{h}_{\mathrm{c}} \quad=\frac{1}{2}(0.60+1.50)=1.05 \mathrm{~m}$

Resultant Force

$\mathrm{F} \quad=\rho \mathrm{g} \mathrm{A} \mathrm{h}_{\mathrm{c}}=9.81 \times 1200 \times 1.228 \times 1.05$

$$
=15180 \mathrm{~N}
$$

Unlock your potential
 eLibrary solutions from bookboon is the key

bookboon eLibrary

Download free eBooks at bookboon.com
1.7 A rectangular block of wood, floats with one face horizontal in a fluid ($\mathrm{RD}=0.9$). The wood's density is $750 \mathrm{~kg} / \mathrm{m}^{3}$. Determine the percentage of the wood, which is not submerged.
[Ans: 17\%]

Solution:

For stable condition

Upthrust $=$ weight force or
$\mathrm{F}=\mathrm{W}$

The Upthrust due to Buoyancy $=\rho_{\text {seawater }} \mathrm{g} \mathrm{V}_{\mathrm{x}}$

The total weight of submersed wood $=\rho_{\text {wood }} g V_{L}$

Therefore the portion of block that is NOT submerged is
$1-\mathrm{V}_{\mathrm{x}} / \mathrm{V}_{\mathrm{L}}=\left(\rho_{\text {wood }} / \rho_{\text {water }}\right)=1-750 / 900=17 \%$
1.8 An empty balloon and its equipment weight 50 kg , is inflated to a diameter of 6 m , with a gas of density $0.6 \mathrm{~kg} / \mathrm{m}^{3}$. What is the maximum weight of cargo that can be lifted on this balloon, if air density is assumed constant at $1.2 \mathrm{~kg} / \mathrm{m}^{3}$?
[Ans: 17.86 kg]

Solution:

Since the system is stable according to Newton's second law of motion:

Upthrust $=$ Weight force + Payload

The Upthrust is $\mathrm{F} \quad=\rho \mathrm{xg} \mathrm{xV}_{\mathrm{L}}=1.2 \times 9.81 \times\left(\pi \mathrm{x}(4 / 3) \times 3^{3}\right)=1331.4 \mathrm{~N}$

Weight of balloon gas $=\rho \times V_{L}=0.6 \times 9.81 \times\left(\pi x(4 / 3) \times 3^{3}\right)=666 \mathrm{~N}$

Weight of equipment $=50 \mathrm{~kg}=50 \mathrm{x} 9.81=490.5 \mathrm{~N}$

Therefore the payload that can be lifted

$$
\begin{aligned}
\mathrm{P} & =\mathrm{F}-\mathrm{W} \\
& =1331.4-(666+490.5) \\
& =175 \mathrm{~N}=17.9 \mathrm{~kg} .
\end{aligned}
$$

2 Chapter Two Tutorial Problems

2.1 A 20 mm dam pipe forks, one branch being 10 mm in diameter and the other 15 mm in diameter. If the velocity in the 10 mm pipe is $0.3 \mathrm{~m} / \mathrm{s}$ and that in the 15 mm pipe is $0.6 \mathrm{~m} / \mathrm{s}$, calculate the rate of flow in $\mathrm{cm}^{3} / \mathrm{s}$ and velocity in m / s in the 20 mm diameter pipe.
$\left(129.6 \mathrm{~cm}^{3} / \mathrm{s}, 0.413 \mathrm{~m} / \mathrm{s}\right)$

Solution:

Total mass flow into the junction $=$ Total mass flow out of the junction

$$
\rho_{1} Q_{1}=\rho_{2} Q_{2}+\rho_{3} Q_{3}
$$

When the flow is incompressible (e.g. if it is water) $\rho_{1}=\rho_{2}=\rho$

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{A}_{2} \mathrm{~V}_{2}+\mathrm{A}_{3} \mathrm{~V}_{3} \\
& =(\pi / 4) \mathrm{D}_{2}{ }^{2} \times \mathrm{V}_{2}+(\pi / 4) \mathrm{D}_{3}^{2} \times \mathrm{V}_{3} \\
& =(\pi / 4) 0.01^{2} \times 0.3+(\pi / 4) 0.015^{2} \times 0.6 \\
& =2.356 \times 10^{-5}+10.6 \times 10^{-5} \\
& =12.96 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

since

$$
\begin{aligned}
& Q=A_{1} \times V_{l} \\
& \therefore V_{1}=\frac{Q}{\frac{\pi}{4} \times 0.02^{2}}=0.4125 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2.2 Water at 36 m above sea level has a velocity of $18 \mathrm{~m} / \mathrm{s}$ and a pressure of $350 \mathrm{kN} / \mathrm{m}^{2}$. Determine the potential, kinetic and pressure energy of the water in metres of head. Also determine the total head.

Ans ($35.68 \mathrm{~m}, 16.5 \mathrm{~m}, 36 \mathrm{~m}, 88.2 \mathrm{~m}$)

Solution

Take each term separately

$$
\begin{aligned}
& \frac{p_{1}}{\rho g}=\frac{350 \times 10^{3}}{1000 \times 9.81}=35.678 \mathrm{~m} \\
& \frac{V_{I}^{2}}{2 g}=\frac{18^{2}}{2 \times 9.81}=16.514 \mathrm{~m} \\
& z_{1}=36 \mathrm{~m}
\end{aligned}
$$

The total head $=35.678+16.514+36=88.192 \mathrm{~m}$

2.3 The air supply to an engine on a test bed passes down a 180 mm diameter pipe fitted with an orifice plate 90 mm diameter. The pressure drop across the orifice is 80 mm of paraffin. The coefficient of discharge of the orifice is 0.62 and the densities of air and paraffin are $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and $830 \mathrm{~kg} / \mathrm{m}^{3}$ respectively. Calculate the mass flow rate of air to the engine.

Ans ($0.16 \mathrm{~kg} / \mathrm{s}$)

Solution:

(i) $\quad \mathrm{p}_{1}-\mathrm{p}_{2}=\rho_{\mathrm{m}} \mathrm{xgxh}$

$$
=830 \times 9.81 \times 0.080=651 \mathrm{~Pa}
$$

(ii) $\quad v_{2}=\sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho\left[1-\left(A_{2} / A_{1}\right)^{2}\right]}}=\sqrt{\frac{2 x 651.4}{1.2 x\left[1-(90 / 180)^{4}\right]}}=34.03 \mathrm{~m} / \mathrm{s}$
(iii) $\quad \mathrm{m}=\mathrm{C}_{\mathrm{d}} \mathrm{V}_{2} \mathrm{~A}_{2} \mathrm{x} \rho$

$$
\begin{aligned}
A_{2}= & \frac{\pi}{4} x 0.09^{2}=6.36 \times 10^{-3} \mathrm{~m}^{2} \\
\mathrm{Q} \quad & =0.62 \times 34.03 \times 0.00636 \times 1.2 \\
& =0.161 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

2.4 Determine the pressure loss in a 100 m long, 10 mm diameter smooth pipe if the flow velocity is $1 \mathrm{~m} / \mathrm{s}$ for:
a) air whose density $1.0 \mathrm{~kg} / \mathrm{m}^{3}$ and dynamic viscosity $1 \times 10^{-5} \mathrm{Ns} / \mathrm{m}^{2}$.
b) water whose density $1000^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and dynamic viscosity $1 \times 10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$.

Ans: $\left(320 \mathrm{~N} / \mathrm{m}^{2}, 158 \mathrm{kN} / \mathrm{m}^{2}\right)$

Solution:

a) For air
$\operatorname{Re} \quad=\rho \mathrm{V} D / \mu=1 \times 1 \times 0.01 / 1 \times 10^{-5}=1000$ i.e. laminar
$\mathrm{f}=16 / \mathrm{Re}=16 /(1000)=0.016$

$$
\text { therefore } \quad h_{f}=4 x f x \frac{L}{D} \frac{v^{2}}{2 g}
$$

$$
\begin{aligned}
& h_{f}=4 \times 0.016 \times \frac{100}{0.01} \times \frac{1^{2}}{19.62}=32.6 \mathrm{~m} \\
& P=\rho . g . h_{f}=1.0 \times 9.81 \times 32.6=320 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

b) for water

$$
\begin{aligned}
\operatorname{Re} \quad & =\rho \mathrm{VD} / \mu \\
& =1000 \times 1 \times 0.01 / 1 \times 10^{-3}=10^{4} \text { i.e. turbulent flow } \\
\mathrm{f} \quad & =0.079 / \operatorname{Re}^{0.25} \\
& =0.079 /\left(10^{4}\right)^{0.25}=0.0079
\end{aligned}
$$

$$
\text { therefore } \quad h_{f}=4 x f x \frac{L}{D} \frac{v^{2}}{2 g}
$$

$$
\begin{aligned}
& h f=4 x 0.0079 x \frac{100}{0.01} \times \frac{1^{2}}{19.62}=16.1 \mathrm{~m} \\
& P=\rho . g . h_{f}=1000 x 9.81 \times 16.1=157941=158 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

2.5 Determine the input power to an electric motor ($\eta_{m}=90 \%$) supplying a pump ($\eta_{p}=90 \%$) delivering $50 \mathrm{l} / \mathrm{s}$ of water ($\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mu=0.001 \mathrm{~kg} / \mathrm{ms}$) between two tanks with a difference in elevation of 50 m if the pipeline length is 100 m long in total of 150 mm diameter, assume a friction factor of 0.008 and neglect minor losses.

Ans: (33.6 kW)

Solution:

$$
\begin{aligned}
& \mathrm{V}=\mathrm{Q} / \mathrm{A}=0.05 /\left(\pi \times 0.15^{2} / 4\right)=2.83 \mathrm{~m} / \mathrm{s} \\
& \mathrm{Re}=\rho \mathrm{VD} / \mu=1000 \times 2.83 \times 0.15 / 0.001=4.244 \times 10^{5}
\end{aligned}
$$

$$
\mathrm{k} / \mathrm{D}=0.15 / 150=0.001 ; \quad \text { From Moody diagram } \mathrm{f}=0.0051
$$

$$
h_{f}=\frac{4 f L}{D} \frac{v^{2}}{2 g}=\frac{4 \times 0.008 \times 100}{0.15} \times \frac{2.83^{2}}{2 \times 9.81}=8.708 \mathrm{~m}
$$

$$
\mathrm{h}_{\mathrm{sys}}=\mathrm{H}_{\mathrm{f}}+\mathrm{H}_{\mathrm{z}}+\mathrm{H}_{\mathrm{o}}=8.708+50+0=58.808 \mathrm{~m}
$$

$$
\text { Input power } P=\frac{\rho \cdot g \cdot Q \cdot H_{\text {sys }}}{\eta_{m} \eta_{n}}=\frac{1000 \times 9.81 \times 0.05 \times 58.708}{0.9 \times 0.9}=33.551 \mathrm{~kW}
$$

Download free eBooks at bookboon.com
2.6 A jet of water strikes a stationary flat plate "perpendicularly", if the jet diameter is 7.5 cm and its velocity upon impact is $30 \mathrm{~m} / \mathrm{s}$, determine the magnitude and direction of the resultant force on the plate, neglect frictional effect and take water density as $1000 \mathrm{~kg} . \mathrm{m}^{3}$.

Ans (3970 N)

Solution:

$$
\begin{aligned}
& A=\frac{\pi}{4} D^{2}=\frac{\pi}{4} \times 0.075^{2}=4.418 \times 10^{-3} \mathrm{~m}^{2} \\
& F x=\rho A V^{2}(1-\cos \theta) \\
& F x=1000 \times 4.418 \times 10^{-3} \times 30^{2} \times(1-0) \\
& F X=3976 N
\end{aligned}
$$

2.7 A horizontally laid pipe carrying water has a sudden contraction in diameter from 0.4 m to 0.2 m respectively. The pressure across the reducer reads 300 kPa and 200 kPa respectively when the flow rate is $0.5 \mathrm{~m}^{3} / \mathrm{s}$. Determine the force exerted on the section due to the flow, assuming that friction losses are negligible.

Ans: (25.5 kN)

Solution:

$$
\begin{aligned}
& A_{1}=\frac{\pi}{4} \times 0.4^{2}=0.1256 \mathrm{~m}^{2} \\
& A_{2}=\frac{\pi}{4} \times 0.2^{2}=0.0314 \mathrm{~m}^{2} \\
& v_{1}=\frac{Q}{A_{1}}=\frac{0.5}{\frac{\pi}{4} \times 0.4^{2}}=3.979 \mathrm{~m} / \mathrm{s} \\
& v_{2}=\frac{Q}{A_{2}}=\frac{0.5}{\frac{\pi}{4} \times 0.2^{2}}=15.915 \mathrm{~m} / \mathrm{s} \\
& -F_{x}+p_{1} A_{1}-p_{2} A_{2} \cos \theta=\rho \dot{V}\left(V_{2} \cos \theta-V_{l}\right) \\
& -F x+300 x 10^{3} x 0.1256-200 \times 10^{3} x 0.0314 x 1=1000 x 0.5 x(15.915-3.979) \\
& -F x+37680-6283=5968
\end{aligned}
$$

Hence

$$
\mathrm{Fx}=25429 \mathrm{~N}
$$

Download free eBooks at bookboon.com
2.8 A siphon has a uniform circular bore of 75 mm diameter and consists of a bent pipe with its crest 1.8 m above water level and a discharge to the atmosphere at a level 3.6 m below water level. Find the velocity of flow, the discharge and the absolute pressure at crest level if the atmospheric pressure is $98.1 \mathrm{kN} / \mathrm{m}^{2}$. Neglect losses due to friction.

Ans ($0.0371 \mathrm{~m}^{3} / \mathrm{s}, 45.1 \mathrm{kN} / \mathrm{m}^{2}$)

Solution:

$$
\begin{aligned}
& \frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{3}}{\rho g}+\frac{v_{3}^{2}}{2 g}+z_{3} \\
& 0+0+3.6=0+\frac{v_{3}^{2}}{2 g}+0 \\
& \text { hence } \rightarrow V_{3}=\sqrt{2 \times 9.81 \times 3.6}=8.404 \mathrm{~m} / \mathrm{s} \\
& Q=A x V=\frac{\pi}{4} D^{2} \times V=\frac{\pi}{4} \times 0.075^{2} \times 8.404=0.037 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

$$
\frac{98.1 \times 10^{3}}{1000 \times 9.81}+0=\frac{p_{2}}{\rho g}+5.4
$$

$$
\therefore P_{2}=98.1 \times 10^{3}-5.4 \times 9810=45126 \mathrm{~Pa}
$$

3 Chapter Three Tutorial Problems

3.1 If the vertical component of the landing velocity of a parachute is equal to that acquired during a free fall of 2 m , find the diameter of the open parachute (hollow hemisphere) if the total weight of parachute and the person is 950 N . Assume for air at ambient conditions, Density $=1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{Cd}=1.35$

Ans (6.169m)

Solution:

Download free eBooks at bookboon.com

$$
\begin{aligned}
& V_{2}^{2}=V_{1}^{2}+2 \mathrm{as} \\
& V=\sqrt{2 \times 9.81 \times 2}=6.264 \mathrm{~m} / \mathrm{s} \\
& N S L: \\
& \sum F=0 \\
& m \cdot g-\frac{1}{2} \rho \cdot V^{2} \cdot A_{f} x C_{d}=0 \\
& 950-\frac{1}{2} \times 1.2 \times 6.264^{2} \cdot\left(\frac{\pi}{4}\right) D^{2} \times 1.4=0 \\
& \text { solve } \rightarrow D=6.17 \mathrm{~m}
\end{aligned}
$$

3.2 A buoy is attached to a weight resting on the seabed; the buoy is spherical with radius of 0.2 m and the density of sea water is $1020 \mathrm{~kg} / \mathrm{m}^{3}$. Determine the minimum weight required to keep the buoy afloat just above the water surface. Assume the buoy and the chain has a combined weight of 1.2 kg .

Ans (33 kg)

Solution:

motionless

Since the system is stable and motionless, Newton's second law of motion reduces to:

$$
\begin{aligned}
& \text { Weight }=\text { Upthrust (Buoyancy) } \\
& \mathrm{Fb}=\mathrm{Fg}
\end{aligned}
$$

Volume of sphere $\quad=(4 . \mathrm{pi} / 3) \mathrm{x}^{3}=0.0335 \mathrm{~m}^{3}$

The Upthrust is $\mathrm{F}_{\mathrm{B}} \quad=\rho_{\text {fluid }} \times \mathrm{V}_{\mathrm{L}} \times \mathrm{g}=1020 \times 0.0335 \times 9.81=335.3 \mathrm{~N}$

Weight $\quad=9.81 \times(1.2+$ Load $)$

Hence the payload $\quad=(335.3 / 9.81)-1.2=32.98 \mathrm{~kg}$
3.3 An aeroplane weighing 65 kN , has a wing area of $27.5 \mathrm{~m}^{2}$ and a drag coefficient (based on wing area) $C_{D}=0.02+0.061 \mathrm{xC}_{\mathrm{L}}{ }^{2}$. Assume for air at ambient conditions, Density $=0.96 \mathrm{~kg} / \mathrm{m}^{3}$. Determine the following when the craft is cruising at $700 \mathrm{~km} / \mathrm{h}$:

1. the lift coefficient
2. the drag coefficient, and
3. the power to propel the craft.

Ans ($0.13,0.021,2040 \mathrm{~kW}$)

Solution:

$$
\begin{aligned}
& C_{L}=\frac{F_{L}}{(1 / 2) \rho \cdot A . V^{2}}=\frac{65 \times 10^{3}}{(1 / 2) \times 0.96 \times 27.5 \times V^{2}} \\
& C_{D}=0.02+0.061 \times C_{L}{ }^{2}=0.02+0.061 \times\left[\frac{65 \times 10^{3}}{(1 / 2) \times 0.96 \times 27.5 \times V^{2}}\right]^{2}
\end{aligned}
$$

hence

$$
F_{D}=\frac{1}{2} \rho \cdot V^{2} . A_{f} x C_{D}=\frac{1}{2} \times 0.96 \times V^{2} \times 27.5 \times\left(0.02+14.79 \times 10^{5} \times V^{-4}\right)
$$

Power

$$
\begin{aligned}
& P=F_{D} \times V=0.264 V^{3}+1.952 \times 10^{7} V^{-1} \\
& V=700 \mathrm{~km} / \mathrm{h}=\frac{700 \times 1000}{3600}=194.444 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

hence

$$
\begin{aligned}
& C_{L}=14.79 \times 10^{5} \times(194.444)^{-4}=0.13 \\
& C_{D}=0.02+0.061 \times 0.13^{2}=0.021
\end{aligned}
$$

$$
P=0.264 \times 194.444^{3}+1.952 \times 10^{7} / 194.444=2041 \mathrm{~kW}
$$

3.4 A racing car shown below is fitted with an inverted NACA2415 aerofoil with lift to drag given as: $\quad \mathrm{Cd}=0.01+0.008 \mathrm{x} \mathrm{Cl}^{2}$

The aerofoil surface area is $1 \mathrm{~m}^{2}$ and the car weight is 1 kN ; the car maintains a constant speed of $40 \mathrm{~m} / \mathrm{s}$, determine at this speed:

1. The aerodynamic drag force on the aerofoil

With us you can shape the future. Every single day.

For more information go to:
www.eon-career.com

Your energy shapes the future.
e.on

Assume for air at ambient conditions, take Density $=1.2 \mathrm{~kg} / \mathrm{m}^{3}$

Solution:

$C_{L}=\frac{F_{L}}{(1 / 2) \rho \cdot A \cdot V^{2}}=\frac{1 \times 10^{3}}{(1 / 2) \times 1.2 \times 1 \times 40^{2}}=1.0417$
$C_{D}=0.01+0.008 x C_{L}{ }^{2}=0.01+0.008 \times 1.0417^{2}=0.01868$
$F_{D}=\frac{1}{2} \rho \cdot V^{2} . A_{f} x C_{d}=\frac{1}{2} \times 1.2 \times 1 \times 40^{2} \times 0.01868=17.9 \mathrm{~N}$

Power $=F_{D} \times V=17.9 \times 40=0.717 \mathrm{~kW}$
3.5 Air flows over a sharp edged flat plate, 3 m long and 3 m wide at a velocity of $2 \mathrm{~m} / \mathrm{s}$.

1. Determine the drag force
2. Determine drag force if the plate was mounted perpendicular to the flow direction assume $\mathrm{Cd}=1.4$.

For air, take density as $1.23 \mathrm{~kg} / \mathrm{m}^{3}$, and kinematic viscosity as $1.46 \times 10^{-5} \mathrm{~m} / \mathrm{s}^{2}$.

Ans ($0.05 \mathrm{~N}, 31 \mathrm{~N}$)

Solution:

1.

$$
\begin{aligned}
& \mathrm{Re}_{l}=\frac{V_{\infty} x L}{v}=\frac{2 \times 3}{1.46 \times 10^{-5}}=4.11 \times 10^{5}<5 \times 10^{5} \rightarrow \text { Laminar } \\
& C_{D}=\frac{1.328}{(\operatorname{Re})^{0.5}}=0.00207 \\
& F_{D}=\frac{1}{2} \rho \cdot A \cdot V_{\infty}{ }^{2} \times C_{D}=\frac{1}{2} \times 1.23 \times(3 \times 3) \times 2^{2} \times 0.00207=0.045 \mathrm{~N}
\end{aligned}
$$

2.

$$
\begin{aligned}
& C d=1.4 \\
& F_{D}=\frac{1}{2} \rho \cdot A \cdot V_{\infty}{ }^{2} \times C_{D}=\frac{1}{2} \times 1.23 \times(3 \times 3) \times 2^{2} \times 1.4=30.4 \mathrm{~N}
\end{aligned}
$$

3.6 (a) An airplane wing has a 7.62 m span and 2.13 m chord. Estimate the drag on the wing (two sides) treating it as a flat plate and the flight speed of $89.4 \mathrm{~m} / \mathrm{s}$ to be turbulent from the leading edge onward.
(b) Determine the reduction in power that can be saved if the boundary layer control device is installed on the wing to ensure laminar flow over the entire wing's surface.

For air, take density as $1.01 \mathrm{~kg} / \mathrm{m}^{3}$, and kinematic viscosity as $1.3 \times 10^{-5} \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

a)

$$
\begin{aligned}
& \mathrm{Re}_{I}=\frac{V_{\infty} x L}{v}=\frac{89.4 \times 2.13}{1.3 \times 10^{-5}}=1.265 \times 10^{7}>5 \times 10^{5} \rightarrow \text { Turbulent } \\
& C_{D}=\frac{0.074}{(\operatorname{Re})^{0.2}}=0.00273 \\
& F_{D}=\frac{1}{2} \rho \cdot A . V_{\infty}{ }^{2} \times C_{D}=\frac{1}{2} \times 1.01 \times(2 \times 7.62 \times 2.13) \times 89.4^{2} \times 0.00273=357.6 \mathrm{~N} \\
& \text { Power }=F_{D} \times V=357.6 \times 89.4=31.969 \mathrm{~kW}
\end{aligned}
$$

b) laminar.

$$
\begin{aligned}
& C_{D}=\frac{1.328}{\left(1.265 \times 10^{7}\right)^{0.5}}=0.00037 \\
& F_{D}=\frac{1}{2} \rho \cdot A . V_{\infty}{ }^{2} \times C_{D}=\frac{1}{2} \times 1.01 \times(2 \times 7.62 \times 2.13) \times 89.4^{2} \times 0.00037=48.9 \mathrm{~N} \\
& \text { Power }=F_{D} \times V=48.9 \times 89.4=4.372 \mathrm{~kW} \\
& \text { \%reduction }=86.3 \%
\end{aligned}
$$

4 Chapter Four Tutorial Problems

4.1 Assuming the ideal gas model holds, determine the velocity of sound in
a) air (mwt 28.96) at $25^{\circ} \mathrm{C}$, with $\gamma=1.4$,
b) $\operatorname{argon}(m w t 39.95)$ at $25^{\circ} \mathrm{C}$, with $\gamma=1.667$.

Ans: $[346 \mathrm{~m} / \mathrm{s}, 321.5 \mathrm{~m} / \mathrm{s}$]

Solution:

For air at $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{R}=8314.4 / 28.96=287.096 \mathrm{~J} / \mathrm{kgK} \\
& \mathrm{a}=[\gamma \mathrm{R} \mathrm{~T}]^{1 / 2}=(1.4(287.096 \mathrm{~J} / \mathrm{K} \mathrm{~kg})(298 \mathrm{~K}))^{1 / 2}=346.029(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

For Argon

$$
\begin{aligned}
& \mathrm{R}=8314.3 / 39.95=208.117 \mathrm{~J} / \mathrm{kgK} \\
& \mathrm{a}=[\gamma \mathrm{R} \mathrm{~T}]^{1 / 2}=(1.667(208.117 \mathrm{~J} / \mathrm{K} \mathrm{~kg})(298 \mathrm{~K}))^{1 / 2}=321.536(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

4.2 An airplane can fly at a speed of $800 \mathrm{~km} / \mathrm{h}$ at sea-level where the temperature is $15^{\circ} \mathrm{C}$. If the airplane flies at the same Mach number at an altitude where the temperature is $-44^{\circ} \mathrm{C}$, find the speed at which the airplane is flying at this altitude.

Ans: [195m/s]

Solution:

$\mathrm{a}=[\gamma \mathrm{R} \mathrm{T}]^{1 / 2}$

$$
\begin{aligned}
& =(1.4 \times 287 \mathrm{x}(273+15))^{1 / 2} \\
& =346.17(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

$\mathrm{V}_{1}=800 \mathrm{~km} / \mathrm{h}=800 \times 1000 / 3600=222.222 \mathrm{~m} / \mathrm{s}$
$\mathrm{M}=\mathrm{V} / \mathrm{a}=222.222 / 346.17=0.642$
$\mathrm{a}_{2}=[\gamma \mathrm{R} \mathrm{T}]^{1 / 2}$

$$
\begin{aligned}
& =(1.4 \mathrm{x} 287 \mathrm{x}(273-44))^{1 / 2} \\
& =303.33(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

Hence

$$
\mathrm{V}_{2}=\mathrm{M} \mathrm{x} \mathrm{a}_{2}=303.33 \times 0.642=195 \mathrm{~m} / \mathrm{s}
$$

Download free eBooks at bookboon.com
4.3 A low flying missile develops a nose temperature of 2500 K when the ambient temperature and pressure are 250 K and 0.01 bar respectively. Determine the missile velocity and its stagnation pressure. Assume for air: $\gamma=1.4 . \mathrm{Cp}=1005 \mathrm{~J} / \mathrm{kgK}$

Ans: [2126 m/s, 31.6 bar]

Solution:

$$
\begin{aligned}
& C p=C v+R \\
& C p=C p / \gamma+R
\end{aligned}
$$

hence

$$
\begin{aligned}
& R=\frac{(\gamma-1)}{\gamma} x C p=\frac{1.4-1}{1.4} x 1005=287.143 \mathrm{~J} / \mathrm{kgK} \\
& T_{o}-T=V^{2} / 2 C p
\end{aligned}
$$

$$
V=\sqrt{2 x C p x\left(T_{o}-T\right)}=\sqrt{2 x 1005 x(2500-250)}=2126.67 \mathrm{~m} / \mathrm{s}
$$

$$
\frac{P_{o}}{P}=\left[1+\frac{V^{2}}{2 . C p . T}\right]^{\frac{\gamma}{\gamma-1}}
$$

$$
P_{o}=P x\left[1+\frac{V^{2}}{2 C p \cdot T}\right]^{\frac{\gamma}{\gamma-1}}
$$

$$
=0.01 x\left[1+\frac{2126.67^{2}}{2 x 1005 x(273+250)}\right]^{\frac{1.4}{0.4}}=31.6 \mathrm{bar}
$$

4.4 An airplane is flying at a relative speed of $200 \mathrm{~m} / \mathrm{s}$ when the ambient air condition is 1.013 bar, 288 K. Determine the temperature, pressure and density at the nose of the airplane. Assume for air: $\gamma=1.4$, density at ambient condition $=1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{Cp}=1005 \mathrm{~J} / \mathrm{kgK}$.

Ans: $\left[\mathrm{T}_{\mathrm{o}}=307.9 \mathrm{~K}, \mathrm{P}_{\mathrm{o}}=1.28\right.$ bar, $\left.\rho=1.42 \mathrm{~kg} / \mathrm{m}^{3}\right]$

Solution:

$$
\begin{aligned}
& T_{o}=T+\frac{V^{2}}{2 x C p}=288+\frac{200^{2}}{2 \times 1005}=307.9 \mathrm{~K} \\
& \frac{P_{o}}{P}=\left[1+\frac{V^{2}}{2 . C p . T}\right]^{\frac{\gamma}{\gamma-1}} \\
& P_{o}=P x\left[1+\frac{V^{2}}{2 C p . T}\right]^{\frac{\gamma}{\gamma-1}}=1.013 x\left[1+\frac{200^{2}}{2 \times 1005 \times 288}\right]^{\frac{1.4}{0.4}}=1.28 \mathrm{bar} \\
& \rho_{o}=\frac{P_{o}}{R x T_{o}}=\frac{1.28 \times 10^{5}}{287 \times 307.9}=1.448 \mathrm{~kg} / \mathrm{m}^{3} \\
& \rho_{o}=\rho x\left[\frac{P_{o}}{P}\right]^{\frac{1}{\gamma}}=1.2 x\left[\frac{1.28}{1.013}\right]^{1 / 1.4}=1.418 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

TURN TO THE EXPERTS FOR SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do business reviews of existing subscription businesses and we develope acquisition and retention strategies.

Learn more at linkedin.com/company/subscrybe or contact Managing Director Morten Suhr Hansen at mha@subscrybe.dk

SUBSCRソBE - to the future

5 Chapter Five Tutorial Problems

5.1 A small-scale hydraulic power system has an elevation difference between the reservoir water surface and the pond water surface downstream of the turbine is 10 m . The flow rate through the turbine is $1 \mathrm{~m}^{3} / \mathrm{s}$. The turbine/generator efficiency is 83%. Determine the power produced if:
a) Flow losses are neglected.
b) Assume friction loss equivalent to 1 m head.

Ans: (81 kW, 73 kW)

Solution:

a)
losses $=0 m$
$P_{A}=\rho g Q H \eta=1000 \times 9.81 \times 1 \times 10 \times 0.83=81.4 \mathrm{~kW}$
b)

$$
\text { losses }=1 \mathrm{~m}
$$

$P_{B}=1000 \times 9.81 \times 1 \times(10-1) \times 0.83=73.26 M W$
5.2 A hydro-electric power plant based on the Loch Sloy in Scotland has an effective head of 250 metres. If the flow rate of $16 \mathrm{~m}^{3} / \mathrm{s}$ can be maintained, determine:
a) the total power input to the turbine assuming a hydraulic efficiency of 98%; and
b) the pressure difference across the turbine.

Ans: (38 MW, 2.4 MPa)

Solution:

The power available from water is

$$
\begin{aligned}
\mathrm{P} & =\rho \mathrm{Qghx} \mathrm{\eta} \\
& =1000 \times 16 \times 9.81 \times 250 \times 0.98 \\
& =38455.2 \mathrm{~kW} \text { which is } 38 \mathrm{MW} .
\end{aligned}
$$

The power can also be expressed as $=P=Q x \Delta p$

Hence

$$
\begin{aligned}
\Delta \mathrm{p} & =\mathrm{P} / \mathrm{Q} \\
& =38455200 / 16 \\
& =2.403 \mathrm{MPa}
\end{aligned}
$$

5.3 A proposed hydropower plant to be built using a reservoir with a typical head of 18 m and estimated power of 15 MW . You are given the task to select an appropriate type of turbine for this site if the generator requires the turbine to run at a fixed speed of 120 rpm .

> Ans: (Ns=396, Francis or Kaplan)

Solution

Type of Turbine	Specific speed range $N s=N \frac{P^{1 / 2}}{(h)^{5 / 4}}$
Francis	$70-500$
Propeller	$600-900$
Kaplan	$350-1000$
Cross-flow	$20-90$
Turgo	$20-80$
Pelton, 1-jet	$10-35$
Pelton, 2-jet	$10-45$

$N s=N \frac{P^{1 / 2}}{(h)^{5 / 4}}=120 \times \frac{15000^{0.5}}{18^{1.25}}=396.4$
hence - Francis or Kaplan

Solution of Mock Exam

Sample Examination Paper

"I studied English for 16 years but...
 ...I finally
 learned to speak it in just six lessons"
 Jane, Chinese architect

ENGLISH OUT THERE

Click to hear me talking before and after my unique course download

Class Test - Fluid Mechanics

Module Tutor T. AI-Shemmeri

This Paper contains TEN questions. Attempt all questions.
A formulae sheet is provided.
Place your Answers in the space provided. No detailed solution required.
Print your name on every page. Submit all together for marking.

MARKING GRID LEAVE BLANK PLEASE

question	1	2	3	4	5	6	7	8	9	10	total
$1^{\text {st }}$ Marker											
$2^{\text {nd }}$ marker											

Agreed percentage	
Recommended grade	

Question One

List TWO types of instrument used to measure the pressure of a toxic fluid contained in a sealed tank. Complete the table below:

Type	Principle	Marks
Standard Bourdon gauge	Expansion of a helical element when stressed by the action of pressure/force	$/ 4$ marks
Piezometer - closed	A piezometer is a device used to measure static liquid pressure in a system by measuring the height to which a column of the liquid rises against gravity	$/ 4$ marks

Total (8 marks)

Question Two

a) Draw (not to scale) the pressure distribution of the water on the dam shown below:
(6 marks)

b) Indicate on the sketch, the direction of the resultant force on the dam?
(2 marks)
c) Approximately, indicate the position of the centre of pressure on both sides.

Question Three

List Three methods used to improve the resolution of detecting a small pressure reading in a manometer. Complete the table below:

Method	Principle	Marks
Incline one limb	Trigonometry will mean the sensitivity can be improved by reading the longest side of a triangle. Read (Lx Sin(theta)) instead of reading (h)	$/ 3$ marks
Use different size (cross-sectional area) for either side of the manometer.	Help is derived from the continuity law, or displaced volume on either side to remain the same, A. z = constant, so z2 can be much larger if A2 is smaller than A1.	$/ 3$ marks
Use different fluids with appreciably different density values.	This uses the conservation of mass, for the displaced column on either side of the manometer.	$/ 3$ marks

Total (9 marks)

Question Four

Complete the table below:

Theoretical reading of the pressure		$/ 4$ marks
$\mathrm{P}=\mathrm{F} / \mathrm{A}=(2.5+0.5) \times 9.81 /\left(3.14 \times 0.03^{2} / 4\right)$	41635	$/ 3$ marks
\% error $[(41.635-40.000) / 41.635] \times 100 \%$	3.93%	$/ 3$ marks
$\mathrm{F}=\mathrm{P} \times \mathrm{A}=100 \times 10^{3} \times\left(3.14 \times 0.03^{2} / 4\right)$	70.686 N	Total (10 marks)
The maximum load if the gauge limit is 100 kPa	$=7.2 \mathrm{~kg}$	

Question Five

If the fan, below, circulates air at the rate of $0.30 \mathrm{~m}^{3} / \mathrm{s}$, determine the velocity in each section. Complete the table below.

Section	Dimensions m	Area m^{2}	Velocity m / s	Marks
1	0.25 square	$0.25 \times 0.25=0.0625 \mathrm{~m}^{2}$	V 1	$=\mathrm{Q} / \mathrm{A}$ $=0.3 / 0.0625$ $=4.8 \mathrm{~m} / \mathrm{s}$
2	0.20 diameter	$(3.14 / 4) \times 0.2^{2}=0.0314 \mathrm{~m}^{2}$	V 2	$=\mathrm{Q} / \mathrm{A}$ $=0.3 / 0.0314$ $=9.5 \mathrm{~m} / \mathrm{s}$

Total (10 marks)

Question Six

Oil of relative density 0.90 flows at the rate of $100 \mathrm{~kg} / \mathrm{s}$ in a horizontal pipe of 200 mm diameter, 1 km long. If the friction factor for the pipe is 0.006 , complete the following table:

Quantity	Value	Units	Marks
flow velocity $\mathrm{m}=$ density $\mathrm{A} \times \mathrm{V}$ hence $\mathrm{V}=\mathrm{m} /($ den $\times \mathrm{A})$	3.537	$\mathrm{~m} / \mathrm{s}$	$/ 3$ marks
frictional head loss $\mathrm{h}=(4 \mathrm{f} / \mathrm{D}) \times \mathrm{V}^{2} / 2 \mathrm{~g}$	$=(4 \times 0.006 \times 1000 / 0.2) \mathrm{x}\left(3.537^{2} / 19.62\right.$ $=76.5$	m	$/ 3$ marks
frictional pressure loss $\mathrm{P}=$ den $\times \mathrm{g} \times \mathrm{h}$	$=900 \times 9.81 \times 76.5$ $=675$	kPa	$/ 2$ marks
energy to overcome friction $\mathrm{E}=\mathrm{m} . \mathrm{g} . \mathrm{h}$	$=100 \times 9.81 \times 76.5$ $=75$	kW	$/ 2$ marks

Total (10 marks)

American LIGS University

is currently enrolling into its Interactive Online programs:

```
- BBA
- MSc
- MBA
tuition starting at \$155 / month
Interactive Online education
study without leaving your home
- visit ligsuniversity.com to find out mol

Note: LIGS University is not accredited by ans nationally recognized accrediting agency listed by the US Secretary of Education. More info here.

\section*{Question Seven}

Show that Bernoulli's equation is dimensionally homogeneous

3 marks for the p-term,
3 marks for the v-term, and
2 marks for the z-term and
2 for stating that all dimensions have/have not the same dimensions

Total (10 marks)

\section*{Solution:}

Take each term separately
(a) \(\frac{p}{\rho g} \Leftrightarrow \frac{M L T^{-2}}{\left(M L^{-3}\right)\left(L T^{-2}\right)} \Leftrightarrow L \Leftrightarrow m\)
(b) \(\frac{V^{2}}{2 g} \Leftrightarrow \frac{(L / T)^{2}}{(0)\left(L T^{-2}\right)} \Leftrightarrow L \Leftrightarrow m\)
(c) \(Z \Leftrightarrow(L) \Leftrightarrow m\)

All terms have the same units of meters. The equation is therefore dimensionally balanced.

\section*{Question Eight}

Oil (relative density 0.85 , kinematic viscosity 80 cs ) flows at the rate of 90 tonne per hour along a 100 mm bore smooth pipe. Determine for the flow:
\begin{tabular}{|c|c|c|}
\hline Quantity & Value & Marks \\
\hline flow velocity & & / 5 marks \\
\hline \[
\begin{aligned}
& \mathrm{A}=(\mathrm{pi} / 4) \times \mathrm{D}^{2} \\
& \mathrm{~m}=90 \mathrm{t} / \mathrm{h}
\end{aligned}
\] & \[
0.00785 \mathrm{~m}^{2}
\] & \\
\hline \(=90 \times 1000 / 3600\) & \(25 \mathrm{~kg} / \mathrm{s}\) & \\
\hline \(\mathrm{V}=\mathrm{m} / \mathrm{A} /\) density & \(3.745 \mathrm{~m} / \mathrm{s}\) & \\
\hline Nature of the flow
\[
\begin{aligned}
& \text { New }=80 \mathrm{cs} \\
& =80 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \\
& \operatorname{Re}=\operatorname{den} \times \mathrm{V} \times \mathrm{D} / \mathrm{mu} \\
& =\mathrm{V} \times \mathrm{D} / \mathrm{New}
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& \operatorname{Re}=3.745 \times 0.1 / 80 \times 10^{-6} \\
& \operatorname{Re}=4682
\end{aligned}
\] \\
Hence flow turbulent
\end{tabular} & / 5 marks \\
\hline frictional factor
\[
\mathrm{f}=0.079 / R \mathrm{e}^{0.25}
\] & \(\mathrm{f}=0.0095\) & / 2 marks \\
\hline
\end{tabular}

Total (12 marks)

\section*{Question Nine}

List two instruments for measuring the flow rate of air through a rectangular duct.
\begin{tabular}{|l|l|l|}
\hline Method & Principle & marks \\
\hline Hot wire Anemometer & \begin{tabular}{l} 
use a very fine wire (on the order of several \\
micrometres) electrically heated up to some \\
temperature above the ambient. Air flowing past \\
the wire has a cooling effect on the wire. Uses the \\
relationship between the electrical resistance of the \\
wire and the flow speed.
\end{tabular} & \(/ 4\) marks \\
\hline Pitot-static tube & \begin{tabular}{l} 
Relies on the measured static and dynamic pressures \\
to determine the fluid velocity using Bernoulli's \\
equation.
\end{tabular} & \(/ 4\) marks \\
\hline
\end{tabular}

Total (8 marks)

Download free eBooks at bookboon.com

\section*{QUESTION TEN}

Draw the body force diagram for a parachute jumper.

If the vertical component of the landing velocity of a parachute is \(6 \mathrm{~m} / \mathrm{s}\), find the total weight of the parachutist and the parachute (hollow hemisphere Diameter 5 m ).

Assume for air at ambient conditions, Density \(=1.2 \mathrm{~kg} / \mathrm{m}^{3}\) and \(\mathrm{Cd}=2.3\)

\section*{For correct body force diagram}
/2 marks

For correct use of formula
/ 6 marks

For correct answer
/ 2 marks

Total (10 marks)

\section*{SMS from your computer}
...Sync'd with your Android phone \& number


BrowserTexting.com
and start texting from your computer!
(... BrowserTexting

Download free eBooks at bookboon.com

\section*{Solution}


The free body diagram shows that the body is affected by 3 forces.

Newton's second law of motion states that when the object is moving at steady state then the net force on the object must be zero

Hence \(\mathrm{Fg}=\mathrm{Fb}+\mathrm{Fd}\)

Since the parachute is open, the buoyancy force will be negligible and only due to the body of the person, which is small in comparison to the parachute size. \(\mathrm{Fb}=0\)

\section*{NSL:}
\(\sum F=0 \rightarrow F_{w}-F d=0\)
\(F_{w}-\frac{1}{2} \rho \cdot V^{2} \cdot A_{f} x C_{d}=0\)
\(F_{w}=\frac{1}{2} \times 1.2 \times 6^{2} .\left(\frac{\pi}{4}\right) \times 5^{2} \times 2.3=975 \mathrm{~N}=99.4 \mathrm{~kg}\)

\section*{Formulae Sheet}

FLUID STATICS:
\[
P=\rho g h
\]

\section*{CONTINUITY EQUATION:}
\[
\begin{array}{ll}
\text { mass flow rate } & \mathrm{m}=\rho \mathrm{AV} \\
\text { volume flow rate } & \mathrm{Q}=\mathrm{A} \mathrm{~V}
\end{array}
\]

\section*{Energy Equation}
\[
(\mathrm{P} / \rho \mathrm{g})+\left(\mathrm{V}^{2} / 2 \mathrm{~g}\right)+\mathrm{Z}=\mathrm{constant}
\]

\section*{DARCY'S EQUATION}
\[
\mathrm{H}_{\mathrm{f}}=(4 \mathrm{fL} / \mathrm{D})\left(\mathrm{V}^{2} / 2 \mathrm{~g}\right)
\]

\section*{Are you looking for an affordable MBA education? Join American LIGS University today! \\ - tuition starting at \(\$ 155\) / month \\ - Interactive Online education \\ - study without leaving your home \\ - programs in English or Russian}

\section*{visit www.ligsuniversity.com to find out more!}


Download free eBooks at bookboon.com

FRICTION FACTOR FOR A SMOOTH PIPE
\begin{tabular}{ll}
\(\mathrm{f}=16 / \mathrm{Re}\) & if \(\mathrm{Re}<2000\) \\
\(\mathrm{f}=0.079 / \mathrm{Re}^{0.25}\) & if \(\mathrm{Re}>4000\)
\end{tabular}

MOMENTUM EQUATION
\[
\mathrm{F}=\mathrm{m}\left(\mathrm{~V}_{2} \cos \theta-\mathrm{V}_{1}\right)
\]

Drag FORCE \(=C d x(1 / 2) \times \rho . A . V^{2}\)

FLUID POWER
\[
E=\rho \mathrm{gh} \mathrm{Q}
\]```

