GUIDELINE FOR HOME STUDIES SUBJECT: MECHANOTECHNICS N4 PRESCRIBE BOOK: MECHANOTECHNICS N4 RD JOUBERT

Economic growth through education since 1998

Director: Eduan vd Walt 087 913 1333

MECHANOTECHNICS N4 (10 Week Guideline)

WEEK		WEEK	
1	 WORKSHOP LAYOUT Poor & Good Workshop layout. Principles & Important factors. Requirements & procedures. 	2	 BELT DRIVES V Belt Flat Belt & Conveyer belt. How they apply Power Application in the Factories .
3	 Metal Cutting Machines. Different Types. Tools Force and Pressure Determine the Power 	4	 Corrosion Few Materials are indestructible Definition of corrosion Methods to protect materials against corrosion
5	 PRECISION Precise calculations Precise Instruments Concepts of terminology 	6	 BEARINGS Journal or plain Capillarity Lubricants Anti Friction .
7	 GEAR DRIVES Gear Trains Epicyclic Terminology 	8	 Hydraulic Systems Bernoulli's FLOW VENTURI FLOW METER
9	 HYDRAULICS Calculations. Chezy's Formula Darcy's Formula 	10	OLD EXAM Question Papers With MEMO

WEEK 1 1.WORKSHOP LAYOUT

TASK 1.	(2 days)	Read and study from	page 2 to 15
TASK 2.	(2 days)	Do Exercise 1	page 16
TASK 3.	(1 days)	Draw ALL sketches in MO	DULE 1
		For learning the Construc	ction of the Sketches.

- **1. WORKSHOP LAYOUT**
- 2. Poor & Good Workshop layout.
- 3. Principles & Important factors.
- 4. Requirements & procedures.

WEEK 2

2.BELT DRIVES

TASK 1.	(2 days)	Read and study from	page 19 to 56
TASK 2.	(2 days)	Do Exercise 2	page 40
TASK 3.	(1 days)	Draw ALL sketches in MODULE 2	
		For learning the Construction of	the Sketches.

Extra work study following information

- **1. BELT DRIVES**
- 2. V Belt Flat Belt & Conveyer belt.
- 3. How they apply Power
- 4. Application in the Factories .

Advantages of belt drives:

Belt drives are simple are economical.

They don't require parallel shafts.

Belts drives are provided with overload and jam protection.

Noise and vibration are damped out. Machinery life is increased because load fluctuations are shock-absorbed.

They are lubrication-free. They require less maintenance cost.

Belt drives are highly efficient in use (up to 98%, usually 95%).

They are very economical when the distance between shafts is very large.

Disadvantages of belt drives:

In Belt drives, angular velocity ratio is not necessarily constant or equal to the ratio of pulley diameters, because of slipping and stretching.

Heat buildup occurs. Speed is limited to usually 35 meters per second. Power transmission is limited to 370 kilowatts.

Operating temperatures are usually restricted to -35 to 85°C.

Some adjustment of center distance or use of an idler pulley is necessary for wearing and stretching of belt drive compensation.

WEEK 3

3. METAL Cutting Machines

TASK 1.	(2 days)	Read and study from	page 47 to 63
TASK 2.	(2 days)	Do Exercise 3	page 63
TASK 3.	(1 days)	Draw ALL sketches in MODULE 3	
		For learning the Construction of the	Sketches.

- 1. Metal Cutting Machines.
- 2. Different Types. Tools
- 3. Force and Pressure
- 4. Determine the Power

WEEK 4 4. CORROSION

TASK 1.	(2 days)	Read and study from	page 85 to 101
TASK 2.	(2 days)	Do Exercise 4	page 102
TASK 3.	(1 days)	Draw ALL sketches in MODULE 4	
		For learning the Construction of the	ne Sketches.

- 1. Corrosion
- 2. Few Materials are indestructible
- **3.** Definition of corrosion
- 4. Methods to protect materials against corrosion

WEEK 5 5. PRECISION

TASK 1. (2 days)	Read and study from	page 104 to 159
TASK 2. (2 days)	Do Exercises 5.1(p128) 5.2(p142)	5.3(p152) 5.4(p158)
TASK 3. (1 days)	Draw ALL sketches in MODULE 5	
	For learning the Construction of t	ne Sketches.

Extra work study following information.

- **1. PRECISION**
- 2. Precise calculations
- **3. Precise Instruments**

PRECISION Definition

4. Concepts of terminology

http://www.dictionary.com/browse/precision

1. the state or quality of being precise.

- 2. accuracy; exactness: to arrive at an estimate with precision.
- 3. mechanical or scientific exactness: a lens ground with precision.
- 4. punctiliousness; strictness: precision in one's business dealings.

5. Mathematics. the degree to which the correctness of a quantity is expressed. Compare accuracy (def

6. Chemistry, Physics. the extent to which a given set of measurements of the same sample agree with their mean. Compare accuracy (def 2).

WEEK 6 6.BEARINGS

TASK 1.	(2 days)	Read and study from	Page 159 to 195
TASK 2.	(2 days)	Do Exercise 6	Page 196
TASK 3.	(1 days)	Draw ALL Sketches freehand	for MODULE 6
		For learning the Construction	of the SKETCHES

- **1. BEARINGS Journal or plain**
- 2. Capillarity
- 3. Lubricants
- 4. Anti Friction.

http://www.mech-seal.co.za/?cat=44

TYPES

Deep Groove Ball Bearing Aligning Roller Bearing Tapered Roller Bearing Aligning Ball Bearing Angular Contact Ball Bearing Outer Spherical

WEEK 7 7. GEAR DRIVES

TASK 1.	(2 days)	Read and study from	page 197 to 233
TASK 2.	(2 days)	Do Exercise 7.1(p214)	7.2(p228)
TASK 3.	(1 days)	Draw ALL Sketches free	ehand for an Exercise.
		For learning the Constru	uction of the Instruments.

- **1. GEAR DRIVES**
- 2. Gear Trains
- 3. Epicyclic
- 4. Terminology

http://www.clipartkid.com/gears-cliparts/

Epicyclic Gear Arrangement

EPICYCLE (Automatic Gearbox)

Main Formula

 $(A + S) N_P = A N_A + S N_S$

$\mathbf{A} = \mathbf{2} \mathbf{P} + \mathbf{S}$

WHERE A = ANALUS NUMBER OF TEETH
S = SUN NUMBER OF TEETH
AND P = PLANET NUMBER OF TEETH
N = SPEED (RPM) OR (RPS)Eliminate FIX Gear speed N as zero
Substitute in Main formula.
 $(A + S)N_P = AN_A + SN_S$ FIX RINGGEAR $(A + S)N_P = SN_S$
 $(A + S)N_P = AN_A$ FIX SUNGEAR $(A + S)N_P = AN_A$ FIX PLANETGEARS $0 = AN_A + SN_S$

WEEK 8

8. HYDRAULIC SYSTEMS

TASK 1.	(2 days)	Read and study from		page 233 to 261
TASK 2.	(2 days)	Do Exercises	8.1(p244)	8.2(p259)
TASK 3.	(1 days)	Draw ALL Sketc	hes freehand	for MODULE 8.
		For learning the Construction of the Sketches		

- 1. Hydraulic Systems
- 2. Bernoulli's
- 3. FLOW
- 4. VENTURI FLOW METER

BERNOULI's THEOREM

In any close loop the TOTAL Energy is CONSTANT At any point : Pressure Energy + Kinetic Energy + Potential Energy + Heat Energy = Constant

> Pr.E. + K.E. + P.E. + H.E = Constant $\frac{P m}{\rho} + \frac{1}{2}mv^{2} + mgh + m\alpha\Delta T = Constant$ $\Delta T \sim 0$

$$\frac{Pm}{\rho} + \frac{1}{2}mv^2 + mgh = Constant$$

Devide by m:

$$\frac{P}{\rho}$$
 + $\frac{v^2}{2}$ + gh = Constant

WEEK 9 9. HYDRAULICS

TASK 1.	(2 days)	Read and study from	page 261 to 279
TASK 2.	(2 days)	Do Exercise 9	page 280
TASK 3.	(1 days)	Draw ALL Sketches freeha	nd for MODULE 8.
		For learning the Construct	tion of the Sketches

Extra work study following information.

HYDRAULICS
 Calculations.
 Chezy's Formula
 Darcy's Formula

CHEZY'S Formula: and **Darcy's Formula:**

An equation for calculating the average velocity of water flowing in an open channel.

Chezy
$$v = C\sqrt{mi}$$
 $i = \frac{H_f}{\ell}$ $C = \sqrt{\frac{2 g}{f}}$
 $m = \frac{Area (pipe)}{Circumference} = \frac{\pi d^2}{\pi d} = \frac{d}{4}$
 $hf = \frac{4 \times f \times \ell \times v^2}{2 \times g \times d}$ $i = gradient$
 $l = length of pipe$
 $f = Friction$
 $hf = \frac{f \times \ell \times Q^2}{3,026 \times d^5}$ $C = Chezy Constant$
 $d = Pipe Diameter$
 $Q = Flow m^3/s$
 $Hf = Head m$

WEEK 10 OLD EXAM QUESTIONS REVISION

TASK 1-5	(5 days)	Do Old Exam Paper per day Compare with MEMO
TASK 6.	(5 days)	Draw ALL Sketches freehand as above.
		For learning the Construction of the Sketches.